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Abstract--It is well-known that particle inertia in dusty gas flows may cause a certain complex behavior 
of the concentration fields, such as the enrichment of particle concentration along particle trajectories. 
Traditional analyses of these and similar problems were made by treating the gas and the particles as two 
interpenetrating continua and using the two-phase flow equations for the description of the two phases. 
For cases with relatively low Stokes number, the concentration field may be obtained by a regular 
perturbation analysis of the equations of change using the Stokes number as a parameter. In the present 
study, we adopted the Lagrangian view of particle motion and obtained particle concentrations by 
applying mass balance to neighboring trajectories. In contrast to the earlier works, this approach can be 
used for all Stokes numbers and its application (at least in the cases considered) is straightforward. To 
demonstrate its utility, we present the results of our analyses of two specific problems and compare our 
results with those obtained by previous investigators. 

Key Words: aerosols, collection efficiency, inertial effects, dusty gas flow, two phase flow, Lagrangian 
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I N T R O D U C T I O N  

The dynamics of dusty gases represents an important subject of study because of  its relevance to 
several important natural and industrial processes. In analyzing dusty gas flows, one is often 
interested in the concentration field within the dust flow or the stability of the flow. A review by 
Marble (1970) provides an overview of these types of problems and their applications. 

Dusty gas flow has been examined by considering the gas and the particles to constitute two 
continua. The gas motion is given by the Navier-Stokes equations of motion, while the particle 
motion is described by a separate set of  equations of  change for mass and momentum with the 
assumption that the presence of the particles does not alter the background clean gas motion 
significantly. Such two-phase models have been used to study the stability of plane parallel flows 
(e.g. Saffman 1962) and to obtain concentration field information under various conditions (e.g. 
Michael 1968; Michael & Norey 1970; Fernandez de la Mora & Rosner 1981, 1982; Ishii et  al. 

1992). 
Both the earlier works of Michael (1968) and Michael & Norey (1970) as well as the more recent 

ones of Fernandez de la Mora & Rosner (1981, 1982) have shown that the particle concentration 
field may become nonuniform if the inertial effect is sufficiently large. For example, for creeping 
flow past a sphere (and also potential flow about a cylinder), Fernandez de la Mora & Rosner 
(1982) found particle concentration enrichment along the stagnation streamline. With Brownian 
particles this concentration enrichment phenomenon may become important, since in combination 
with the Brownian diffusive effect it may lead to significantly enhanced particle deposition rates. 
Inertial enrichment of particle concentration was also found in the stagnation point flow case by 
Peters & Cooper (1991) and by Ramarao & Tien (1993). 

For the present study, we propose a different approach for determining the motion of the dusty 
gas and the resultant concentration field by adopting the Lagrangian description of particle motion. 
From the solution of  the equations of  particle motion, particle trajectories may be obtained. 
Assuming that there are no concentration singularities within the flow, we can obtain particle 
deposition flux at the collector surface as well as particle concentration within the flow by applying 
the mass balance requirement over neighboring trajectories. The major work involved in applying 
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this method consists of the determination of the particle trajectories--a task that can be 
accomplished by a numerical integration of the Lagrangian equations of motion. 

The results obtained by applying this method to two specific problems, the flow past a sphere 
under creeping flow and potential flow conditions, show that the concentration field has a complex 
behavior and that the inertial enrichment in concentration is found in the upstream portions of 
the flow. In the downstream portion, particle concentration may be depleted and may be significant 
near the rear stagnation region. Good agreement was found between our results and those reported 
by Michael & Norey (1970) previously for the low Stokes number case. 

In the limiting situation of vanishing particle inertia, it can be shown that the particle 
concentration remains uniform throughout the flow if the initial condition is uniform. In the other 
limit of infinitely high inertia, application of the Lagrangian method indicates that the particle 
concentration remains uniform throughout the flow. Thus, particle concentration undergoes a 
maximum as a function of the Stokes number. Investigations using the earlier theory of Fernandez 
de la Mora & Rosner (1982), along the front stagnation line also reveal this feature. 

DETERMINATION OF THE CONCENTRATION FIELD IN A FLOW 

Consider a general fluid flow denoted by the velocity field u(x). Let us suppose that particles 
enter this flow field at a location far from the region of immediate interest with a veloctiy v0(x0). 
Figure 1 shows an example axisymmetric flow field. 
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Figure 1. Definition sketch--general axisymmetric flow. 
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Axisymmetric flow field 

Analogous to streamtubes for fluid flow, one may consider a particle streamtube with its surface 
constructed from a bundle of particle trajectories, as shown in figure 1. We consider two planes, 
So and $1 corresponding to two cross sections of the tube, located over a certain distance. The flux 
of particles entering the tube through So at location 0 is given by 

j * =  f c0* *.nodAv 0 [11 
./So 

and the flux of particles leaving the tube through $1 is given by 

j* = f c 'v*  "nldA [2] 
ds I 

where c is the concentration of particles, v is the particle velocity and no and nl are the unit normal 
vectors over the differential area dA over So and $1; the * indicates dimensional quantities and the 
subscripts 0 and 1 relate, respectively, to the initial conditions (at entry location) or to any other 
location in the flowfield. If  we assume that particles do not cross the streamtube and, furthermore, 
that there are no singularities in particle concentration within the streamtube, these two fluxes 
should be equal. Since the surfaces So and Sl are perpendicular to the z-axis, their unit normal 
vectors no and nl are parallel to the z-components of the particle velocity vectors v0 and vl (and 
also no and u~). Using the particle streamtube bounded by So and $1 as the control volume: 

• * 2__  * * 2 Co v0zdp0- cl vlzdpl, [3] 

where p is the off-center distance and p :=  x 2 +y2. The variables are shown in figure 1. 
We normalize the spatial variables by a length R, the concentrations by the inlet concentration 

(assumed to be uniform over So) and the velocities by the inlet z-directional velocity of the fluid 
U0. In terms of these dimensionless variables, [3] becomes 

1 P0 dp0 
cl = • [4] 

Vl~ Pt dpl 

Equation [3] indicates that to determine the concentration at any location x we need to determine 
v~z, the particle velocity in the z-direction, and the relative increase in the off-center position of 
the particle to its initial off-center position, dpo/dpl. 

For a given flow field, particle trajectories can be determined by applying Newton's law. 
Assuming that Stokes' law may be used to estimate the drag force on the particle due to the relative 
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Figure 2. Definition sketch--flow over a sphere. 
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motion between the gas and the particle, the equation of particle motion (or trajectory equation) 
is given as 

d2x dx 
St d-7 + d-t - u = 0, [5] 

where St is the Stokes number and t is time. 
The method outlined here is based on the Lagrangian description of particle motion. We will 

apply it to two flows to obtain the respective concentration fields. These flows have been 
investigated previously and various approximate analytical and numerical solutions are available. 

CREEPING FLOW OVER A SPHERE 

The flow field is given by the Stokes solution: 

3={±_ ) 
ux=-4 r3 kr 2 1 , 

Uy =-~-~ ~ - -  1 

and 

[6a] 

[6b] 

1 _ ( 3  1"~ 3z 2 / / 1 _  1), [6c] 

where r is the radial distance in spherical coordinates (r2= x2+ y2+ z2). 
In streamfunction form, the flow field is given by 

( 3 , )  
~ = - ½ r 2 s i n 2 0  ' 1 - ~ + ~ r 3  ; [7] 

O' is the angle from the rear stagnation point. 
Based on the fluid velocity expressions of [6a-c] and specific initial positions, Yo, particle 

trajectories can be determined from [5] and the concentration along the trajectory from [4]. Table 1 
gives the results of a number of sample calculations, namely values of the dimensionless 
concentration at various positions (z) along particle trajectories. Notice that the concentration 
increases initially along each particle trajectory until it reaches a maximum. It then decreases as 
the trajectory goes around the sphere and then increases again in the rear half of the flow. If the 
initial position of the trajectory is sufficiently close to the front stagnation line, however (in this 
instance, if Y0 < 0.5), the concentration never recovers to the equilibrium value of 1. The results 
presented in tables 2-5 show the local concentration values corresponding to different St values. 
As can be expected, at high inertia, represented by high St values, differences in particle 
concentrations within the flow field become accentuated. 

COMPARISON WITH EARLIER SOLUTIONS 

The perturbation solution of  Michael ~ Norey (1970) 

Michael & Norey (1970) presented a perturbation solution of the problem considered above 
which is valid for low particle inertia. A regular perturbation solution was found with the particle 
and fluid velocity fields being given by the classical Stokes flow field about a sphere at the leading 
order. The particle concentration was expressed as 

f = f0  + f l  + .... [8] 

where f is the particle mass concentration which to the leading order is unity. The concentration 
f i s  related to c as c = f i f o .  The first-order perturbation for the particle concentration, f% can be 
determined from the Stokes velocity field [see Michael & Norey (1970) for more details]. Along 
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the front  and rear s tagnation line, the particle concentra t ion can be expressed by the following 
simple relations: 

f r o n t  s tagnat ion line, 

1 4  ~r4]; f l = - ~ S t I 8 1 n ( 1  ~ r ) - r  + 1 + 7 +  

and 
rear s tagnat ion line, 

f =  - 2 4 1 n  1 + ~  + r 

[9] 

3 3 3 61-1 
r2 2r 4 + 48 In ~ - - f ] .  [10] 

For other positions within the flow, fi  can be determined by integrating the following equation 
along a given fluid streamline: 

f l '~ 2x/~(1 + r)[4k2r(2r  2 - 1) - 3(r - 1)3(r + l)(2r + 1)] [11] 

~O'J~=k rg/2k(r -- 1)(2r + 1)~/2(4r2 + r + 1) 

Since the present method  determines particle concentrat ions along a given particle trajectory, to 
obtain results which can be compared  conveniently with those based on Michael & Norey ' s  (1970) 
analysis, we used the following procedure.  For  a given location (r, 0) on a particle trajectory, the 
corresponding s treamfunct ion value is found f rom [7]. By identifying the appropr ia te  streamlines, 
integration o f  [l l] a long the streamline can be done in order  to obtain the corresponding 
concentra t ion value. The results obtained by applying this technique were compared  with the 
results presented in table 1 o f  Michael & Norey ' s  (1970) paper and were found to be in suitable 
agreement.  

Table 1 shows a compar i son  o f  the concentra t ion values predicted by the present method  with 
those calculated according to Michael & Norey  (1970). It  is quite clear that  at St = 0.05, the 
agreement  is excellent. The minor  deviations can be attr ibuted to numerical errors in the 
computa t ions  rather than to any fundamenta l  disagreement between the two techniques. Similar 
agreement  was also found for St = 0.01 and 0.02. On  the other  hand, for higher St values (St = 0.1 
and 0.5), compar ison  o f  the results obtained by these two methods  indicates larger discrepancies. 
Since Michael & Norey ' s  (1970) analysis is based on per turbat ion expansions, their method  can 

Table 1. Particle concentration ~ in Stokes flow over a sphere-uniform flow at infinity 

Concentration c 
Y0 = 0.10 Y0 = 0.20 Y0 = 0.50 

Lagrangian Lagrangian Lagrangian 
z method MN method MN method MN 

- 5  1.002 1.001 1.002 1.001 1.002 1.001 
- 2  1.014 1.011 1.012 1.011 1.009 1.008 
- -  1 . 8  1 . 0 1 7  1.016 1.016 1.015 l.OlO 1.010 

-- 1.6 1.024 1.023 1.022 1.021 1.014 1.012 
-- 1.4 1.036 1.035 1.032 1.029 1.016 1.015 
- 1.2 1.056 1.052 1.040 1.038 1.018 1.016 
- 1.0 1.066 1.063 1.044 1.042 1.019 1.017 
-0.8 1.063 1.059 1.044 1.040 1.017 1.016 
-0.6 1.051 1.045 1.032 1.031 1.015 1.013 
- 0.4 1.030 1.027 1.025 1.020 1.011 1.009 
-0.2 1.002 1.007 1.012 1.007 1.003 1.004 

0 0.985 0.987 0.989 0.993 1.001 0.999 
0.2 0.970 0.968 0.984 0.979 1.000 0.994 
0.4 0.957 0.949 0.976 0.967 0.994 0.989 
0.6 0.933 0.932 0.954 0.956 0.990 0.985 

~Particle concentration c as a function of z coordinate along a particle trajectory 
calculated by this work and by Michael & Norey's (1970) method (MN). (z0, Y0) 
represents the initial particle position far away from the collector, where 
V(Xo) = U(Xo). St = 0.05, z o = - 1000, Ay o = 10 -t°. 
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T a b l e  2. Par t ic le  c o n c e n t r a t i o n  in f low for  Y0 = 0.10 

C o n c e n t r a t i o n  c 

St = 0.5 St = 0.25 

L a g r a n g i a n  L a g r a n g i a n  
m e t h o d  M N  m e t h o d  M N  

T a b l e  3. Par t ic le  c o n c e n t r a t i o n  o n  the 
s t a g n a t i o n  t r a j e c to ry  a t  two  loca t ions ,  

v a r i a t i o n  wi th  the  ini t ial  pos i t ion  Y0 

C o n c e n t r a t i o n  c 

- 5 1.007 1.006 1.006 1.003 Y0 z = --  1.01 z = --  1.1 

- 2  1.069 1.111 1.048 1.055 0.5 1.10 1.20 
--  1.8 1.102 1.158 1.067 1.078 0.4 1.132 1.274 

0.2 1.26 1.630 
--  1.2 I. 604 1.569 1.290 1.271 0.1 1.410 2 .124 
--  1.0 2.128 1.742 1.406 1.339 0.01 1.754 3,258 
- - 0 . 8  2 .089 1.669 1.388 1.310 5 x 10 -3 1.801 - -  

- - 0 . 2  1.250 1.076 1.066 1.038 1 x 10 -3 1.840 3.539 
0 1.04 0 .876 0.967 0.938 10 -4 1.857 - -  
0.2 0 .858 0 .692 0 .889 0.843 10 6 1.874 - -  

10 -7 1.874 - -  
1.0 0 .538 0 .316 0.683 0 .619 
2,0 0 .752 0 ,679 0.848 0.831 F M R  1.87 3.56 
5.0 0 .883 0 .762 0 .899 0 .879 

St = 0.25.  F M R  = F e r n a n d e z  de  la M o r a  
M N  = Michae l  & N o r e y  (1970). & R o s n e r  (1982). 

be expected to be valid only when St is sufficiently low. The relatively large disagreement shown 
in table 2 is therefore not surprising. 

The solution of Fernandez de la Mora & Rosner (1982) 

Fernandez de la Mora & Rosner (1982) also treated this problem of determining the particle 
concentration in the Stokes flow. Their approach began with the same equations, which 
subsequently were simplified to a set of three coupled ordinary differential equations for the particle 
concentration and velocity components in the vicinity of the stagnation line. 

We calculated the particle concentration along the stagnation line using the Lagrangian 
method. Since the actual stagnation line (y = 0) ends in a concentration singularity, we used 
an initial position which was approximately close to the stagnation line. Table 3 shows the 
estimated concentration at z = -1.01 for various values of Y0. The corresponding concentration 
obtained by numerically integrating the equations of Fernandez de la Mora & Rosner (1982) is 
also shown. By choosing the initial position to be sufficiently small, we can obtain very good 
agreement with the results based on the equations obtained by Fernandez de la Mora & Rosner 
(1982). 

Table 4 gives the comparisons of the concentration values estimated by the Lagrangian method 
with those obtained using Fernandez de la Mora & Rosner's equations for two different values of 
z, -1.1 and -1.01. The latter value was chosen by these authors to be the position where the 
diffusion boundary layer begins. The agreement was good. 

Since this method is not limited to the stagnation trajectory, we can determine the particle 
concentration at any other location around the sphere for any arbitrary value of St. Table 5 gives 
the concentration values for a high St case (St = 1.0). It is interesting to note that the perturbation 
solution of Michael & Norey (1970) failed in this case, as evidenced by the fact that at certain 
z-values the concentration values were negative--a behavior that is certainly not physically 
possible. 

Limiting cases of low and high inertia 

In the limit of vanishing inertia, particle trajectories and fluid streamlines are coincident and the 
particle and fluid velocities are equal. The continuity equation for the particles becomes 

0c 
0t + (u. V)c = 0. [12] 

At steady state, the concentration gradient is orthogonal to the fluid velocity. Thus, the 
concentration is a constant along the fluid streamlines. If the upstream concentration is uniform, 
the particle concentration within the flow field is also uniform. The momentum equation for the 
particles represents the flow of a clean gas with a density equal to that of the dusty gas. The flow 
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Table 4. Particle concentration along the stagnation line 

Concentration c 

z = -1 .1  z = - 1.01 

Lagrangian Lagrangian 
St method FMR method FMR 

0.25 1.592 i.61 1.816 1.810 
0.50 2.49 2.50 3.539 3.60 
0.70 3.491 3.480 6.28 6.30 
1.0 3.338 3.25 27.456 27.64 
1.1 2.80 2.7225 82.38 82.12 
1.2 2.40 2.338 19.01 18.99 

FMR = Fernandez de la Mora & Rosner (1982). 

Table 5. Particle concentration at a higher St ( =  1.0) value 

Concentration c 

y0 = 0.1 y0 = 1.0 

Lagrangian Lagrangian 
z method MN method MN 

- 5  1.009 1.0111 1.009 1.01 
- 2 1.078 1.222 1.045 1.09 
- 1 . 8  !.110 1.316 1.053 1.111 

- 1.2 1.7020 2.210 1.087 1.15 
- 1.0 7.580 2.876 1.10 1.128 
- 0 . 8  9.936 2.619 1.I11 1.103 

--0.2 2.994 1.1464 1.113 1.035 
0 2.0673 0.6996 1.102 1.001 
0.2 1.512 0.3052 1.084 0.970 

0.8 0.7046 -0.392 1.1064 0.915 
1.0 0.606 -0.386 0.996 0.909 
5 1.717 0.414 0.966 0.995 

10 1.768 0.4118 0.988 1.002 

z 0 = -- 1000, Ay 0 = 10 -t°. 

of the dusty gas can be identified as the same as the flow of a corresponding clean gas with a higher 
Reynolds number (Michael 1968). 

It is easy to show that [4] also gives the concentration c~ = 1 in the limit of vanishing inertia. 
The fluid and particle velocities are equal (vz = uz). The streamfunction in an axisymmetric flow 
represents the flow rate through a surface such as So extending up to the streamline ~b. By 
continuity, this flow rate is a constant all along the streamline. Since the axial velocity v~ determines 
the flow rate through the surfaces So or Sl, it can be seen that dp2o/dp~, and V~z are exactly equal 
to the reciprocal of each other. Thus, c~ is uniform along the streamlines. (For example, if c~ = 1, 
c remains unity everywhere.) This behavior is valid for any general axisymmetric flow where particle 
trajectories coincide with fluid streamlines. 

In the opposite limit, when particle inertia is extremely high, particle trajectories are rectilinear 
and the particle velocity is uniform and equals its initial value. The relative increase in the area 
of a particle streamtube, dp~/dp~, is unity. Thus, from [4], we see that the concentration at any 
location within the flow is also uniform. 

Since the concentration field is uniform and equal to its initial concentration in both the 
limiting situations, i.e. St = 0 and St >> 1, the concentration at each location must go through a 
maximum (or a minimum) at some value of St. This is indeed confirmed, as shown for the sample 
calculation results given in table 6. This table shows the concentration at a given position as 
a function of the St evaluated by the Lagrangian method. A similar prediction was also obtained 
from the equations of Fernandez de la Mora & Rosner (1982). The agreement is quite 
satisfactory. 

Table 6. Particle concentration at z = -1 .1  and -1.01 as 
a function of  St, showing the maximum 

Concentration c 

z = - I . 1  z = -1.01 

Lagrangian Lagrangian 
St method FMR method FMR 

O.l 1.1926 1.1920 1.278 1.280 
0.25 1.562 1.5550 1.816 1.810 
0.5 2.445 2.4342 3.539 3.60 
1.0 3.259 3.252 27.46 27.63 
2.0 1.398 1.393 1.565 1.559 
3.0 1.186 1.184 1.229 1.224 

FMR -- Fernandez de la Mora & Rosner (1982). 
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POTENTIAL FLOW OVER A SPHERE 

Another case of dusty gas flow over a sphere was considered by Michael (1968). The background 
clean gas was assumed to be in uniform potential ftow over the sphere. Using the same technique 
as described earlier for the Stokes flow, namely a regular perturbation expansion for the particle 
equations of motion in Eulerian form, Michael obtained predictions of the concentration field and 
also the drag exerted on the sphere in this flow. We compared the predictions of the concentration 
fields by our method with the results obtained by Michael (1968). 

The velocity potential for a uniform flow over a sphere is given by 

=(r + )cos0 ,,3, 
The velocity field is given by 

and 

u.__ _(, + [14] 

uo=-(1 + ~Sr2)Sin 0. [15] 

As in the earlier case, an analytical form for the concentration along the front stagnation line 
has been provided by Michael (1968). Table 7 shows the concentration along the front stagnation 
line determined by the Lagrangian method and the prediction using Michael's formula. Calculation 
results for three different values of St are shown in (St = 0.02, 0.1 and 0.5). As expected, the 
concentration values agree with Michael's prediction for St = 0.02. As St increases, the deviation 
between the calculations by the Lagrangian method and the perturbation method increases. The 
perturbation method significantly overpredicts the concentrations for St = 0.5. Table 8 shows 
the concentration calculations at three axial locations corresponding to the frontal, mid-plane 
and rear regions of the flow field (z = -1.0,  0.0 and 10.0) at three different St values. In 
general, the concentrations decrease as one moves away from the z-axis. However, at certain 
locations within the flow and corresponding to certain St values, the calculations are not possible 
because of intersecting particle trajectories. [Intersecting particle trajectories are found in other 
flows also e.g. Wang et al. 1986.] Notice also that in the mid-plane region around the sphere, 
i.e. z = 0.0, there is a steep concentration gradient along the y-coordinate. This is a consequence 
of the crowding of a large number of fluid streamlines and particle trajectories within this 
region. 

The existence of a region of the flow where no particles are found was also predicted previously 
by Michael (1968). The particle trajectory which separates this particle-free region from the bulk 
of the flow may be evaluated in the following manner. Since this particle-free region is inaccessible 
to particles in the entrance region of the flow, one may determine the particle trajectory which 
separates this particle-free region from the rest of the flow field by integrating the particle's 

T a b l e  7. Par t ic le  c o n c e n t r a t i o n  in po ten t i a l  f low over  a sphere  

C o n c e n t r a t i o n  c 

St = 0.02 St = 0.1 St = 0.5 

L a g r a n g i a n  Michae l  L a g r a n g i a n  Michae l  L a g r a n g i a n  Michae l  
z m e t h o d  (1968) m e t h o d  (1968) m e t h o d  (1968) 

- - 2 . 0  1.0003 1.0003 1.0010 1.0017 1.0012 1.0083 
--  1.8 1.0008 1.0007 1.0020 1.0036 1.0022 1.0180 
--  1.5 1.0026 1.0027 1.0079 1.0144 1.0066 1.0718 
--  1.4 1.0044 1.0050 1.0131 1.0249 1.0104 1.1245 
--  1.3 1.0090 1.0092 1.0234 1.0461 1.0169 1.2306 
- 1.2 1.0172 1.0189 1.0486 1.0945 1.0296 1.4725 
- 1.1875 1.0199 1.0209 1.0538 1.1044 1.0325 1.5240 
--  1.1125 1.0375 1.0411 1.1140 1.2062 1.0542 2 .0322 
--  1.1 1.0433 1.0469 1.1326 1.2352 1.0597 2.1778 
--  1.05 1.0853 1.0881 1.2842 1.4414 1.0899 3 .2050 
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Table 8. Particle concentration at various locations for poten- 
tial flow over a sphere 

St -- 0.02 St = 0.05 St = 0.1 

y c y c y c 

z ---- - - 1 . 0  

0.1944 1.164 0.1788 1.462 0.1505 2.011 
0.2827 1.102 0.2666 1.264 0.2389 1.498 
0.4159 1.053 0.4010 1.126 0.3767 1.216 
0.5264 1.031 0.5132 1.072 0.4916 l . l l8  
0.6266 1.020 0.6148 1.044 0.5965 1.072 

z ----0.0 

1.0194 2.1820 1.0441 3.858 1.0787 - -  
1.0211 1.5976 1.0450 2.155 1.0786 - -  
1.0289 1.2106 1.0498 1.730 1.0799 4.875 
1.0430 1.1480 1.0604 1.461 1.0850 2.533 
1.064 1.0954 1.0777 1.272 1.0967 1.743 

z = lO.O 
0.3161 1.810 0.4638 4.808 0.6106 --  
0.3231 1.575 0.4610 3.153 0.6107 --  
0.3539 1.365 0.4790 2.105 0.613 6.313 
0.4046 1.251 0.5064 1.687 0.623 3.119 
0.4708 1.176 0.5491 1.457 0.645 2.143 

equations of motion backwards in time using the initial condition, z (0) -- Z0 >> 1 and v0z = 1. The 
separating trajectory ends at the stagnation point instead of at a location far upstream. 

C O N C L U S I O N  

When inertial effects are dominant in a dusty gas flow, the concentration of  the particles deviates 
from unity and displays a complex behavior of enrichments and depletions in various regions of  
the flow. We demonstrate that this concentration field may be evaluated by a simple Lagrangian 
method based on a mass balance constructed over neighboring particle trajectories, assuming that 
particle trajectories do not intersect. We have applied this technique to the slow- and high-speed 
fluid motion over a sphere. At low St values, the concentration field predictions are in good 
agreement with the earlier perturbation solutions of  Michael & Norey (1970) and Michael (1968). 
The advantages of  the Lagrangian method are its simplicity (both conceptually and in compu- 
tation) and its validity at all St values. In addition to the results reported above, the method was 
successfully applied to other types of flow [i.e. the ideal and viscous stagnation point flow given 
in Schlichting (1979) and potential flow over a cylinder] as well. 
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